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Hitherto, all polydisperse spray models have been based on discretising the liquid
flow field into groups of equally sized droplets. The authors have recently developed
a spray model that captures the full polydisperse nature of the spray flow without us-
ing droplet size classes (Beck, 2000, Ph.D thesis, UMIST; Beck and Watkins, 2001,
Proc. R. Soc. London A). The parameters used to describe the distribution of droplet
sizes are the moments of the droplet size distribution function. Transport equations
are written for the two moments which represent the liquid mass and surface area,
and two more moments representing the sum of drop radii and droplet number are
approximated via use of a presumed distribution function, which is allowed to vary in
space and time. The velocities to be used in the two transport equations are obtained
by defining moment-average quantities and constructing further transport equations
for the relevant moment-average velocities. An equation for the energy of the liquid
phase and standard gas phase equations, including a k–ε turbulence model, are also
solved. All the equations are solved in an Eulerian framework using the finite-volume
approach, and the phases are coupled through source terms. Effects such as inter-
phase drag, droplet breakup, and droplet–droplet collisions are also captured through
the use of source terms. The development of the submodels to describe these effects
is the subject of this paper. All the source terms for the hydrodynamics of the spray
are derived in this paper in terms of the four moments of the droplet size distribution
in order to find the net effect on the whole spray flow field. The development of
similar submodels to describe heat and mass transfer effects between the phases is
the subject of a further paper (Beck and Watkins, 2001, J. Heat Fluid Flow). The
model has been applied to a wide variety of different sprays, including high-pressure
diesel sprays, wide-angle solid-cone water sprays, hollow-cone sprays, and evapo-
rating sprays. The comparisons of the results with experimental data show that the
model performs well. The interphase drag model, along with the model for the turbu-
lent dispersion of the liquid, produces excellent agreement in the spray penetration
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results, and the moment-average velocity approach gives good radial distributions of
droplet size, showing the capability of the model to predict polydisperse behaviour.
Good submodel performance results in droplet breakup, collisions, and evaporation
effects (see (Beck and Watkins, 2001, J. Heat Fluid Flow)) also being captured
successfully. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Many computational spray models employ the discrete droplet model (DDM) pioneered
by Dukowicz [4]. This involves solving the equations of motion for a turbulent carrier
gas in an Eulerian scheme, and integrating Lagrangian equations of motion for liquid
droplets along true path lines. These two calculation schemes, and therefore the two
phases, are then coupled through source terms in the gas phase transport equations (Crowe
et al. [5]). The major advantages of this over a purely Eulerian scheme are the ability
to efficiently discretise the liquid phase into groups of identical droplets, each contain-
ing droplets of a given radius, and the fact that the equations for the dispersed liquid
phase are more naturally written down in a Lagrangian manner. The disadvantages of
the discrete droplet model is that it is dependent on predicting the chaotic motions of
individual droplets to provide an overall picture of the spray (see Gosman and Ioannides
[6]). The stochastic models employed in producing this chaotic motion are computationally
expensive.

Multisize Eulerian treatments have also been employed by similar discretisation of the
droplet size distribution and considering each size group as a completely separate phase
(Mostafa and Mongia [7]). However, this leads to a scheme involving many phases and is
thus also computationally expensive.

The stochastic nature of the sprays has led some researchers to search for a probabilistic
formulation to the problem. This forms the basis of the third method. It is based on the
spray equation of Williams [8]. This involves defining

f j (r, x, v, t) dr dx dv, (1)

where f j is the probable number of droplets in the diameter range dr about r , with velocity
dv about v in position dx about x. Changes in the function are due to convection of j-
particles into the considered volume, acceleration/deceleration of particles into the velocity
range, and growth/shrinking of particles into the diameter range. An Eulerian conservation
equation is then written for f j in each considered range j , by integrating over a narrow radius
range rather than by taking a delta function approach. Lagrangian equations are written to
evaluate the velocity and the rates of change of velocity, radius, and energy. Source terms
are included to model the effects of droplet breakup and the effects on the gas phase. An
early attempt to employ this approach is summarised in Gupta and Bracco [9]. They were
able to obtain closed-form solutions of equations for parcels of drops and then integrate (or
summate) over the total number of parcels to obtain the full solution. However, they were
able to do this only for dilute sprays and by ignoring the important spray phenomena of
drop breakup and collisions.
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An alternative approach to the modelling of polydisperse sprays that also takes the prob-
abilistic approach to the spray equation, but which is able to incorporate thick spray effects
and drop breakup and collisions, has been suggested by Beck [1] and Beck and Watkins [2].
Both the liquid and the gas are represented in the Eulerian formulation, and the full polydis-
perse nature of the spray flow is captured whilst only considering the liquid as one phase.
This requires some representation of the droplet size distribution. The first four moments
of the droplet size number distribution are found to provide an adequate representation of
the polydisperse nature of the spray, and by solving equations for these parameters, a fully
multisize model of the spray has been constructed. There are a number of advantages of
modelling the spray in this fashion. First, the number of equations being solved is signifi-
cantly fewer than any of the previous polydisperse spray models, making the scheme more
computationally efficient than its predecessors. Second, the use of these moments means
that the spray is dealt with in terms of average quantities, allowing a smooth representation
of the droplet size distribution at all points, rather than a discrete representation. These dis-
tribution function moments are very useful parameters in characterising the spray as they are
inherently related to the spray mean diameters. They are also the terms needed to produce
the source terms for the effect of the spray on the gas phase when considering the spray as a
whole.

The original intention of the model was to obtain all of the first four moments by means
of transport equations. Had that been possible there would have been no need to specify a
number distribution, since only the moments are required. To date, however, it has not been
possible to obtain all four moments by means of transport equations. Instead, as explained
in Section 3.2, only two moments are obtained in this way. This means that a number
distribution has to be assumed to get the other two moments. This is clearly a drawback
of the model. Nevertheless, the form of the distribution is allowed to change in space and
time as the spray progresses and it can be truncated in different ways to match the values
of the calculated moments. Different forms of the initial distribution can also be chosen to
represent different spray types.

In [2] only the main model was presented, and no details were given of the forms taken
by the submodels to describe important spray phenomena. These phenomena include the
interphase drag, droplet breakup and collisions, and heat and mass transfer between the
phases. The role of this paper is to complete the description of the hydrodynamics of
the spray modelling by describing how the required models are expressed in terms of the
moments of the number distribution. The heat and mass transfer mechanisms are similarly
treated in [3]. Applications of the model to wide-angle full-cone sprays and evaporating
sprays are reported in [10].

The main model, as derived in [2], is outlined in the next section. Section 3 deals with the
derivation of the spray submodels for interphase drag, drop breakup, and drop collisions.
Included here is material on the initial and boundary conditions imposed on the spray model,
with particular emphasis on the values assigned to the moments of the number distribution
and the moment-averaged velocities. In addition, the treatment of the approximate number
distribution chosen for the model is outlined. Section 4 discusses the computational method
used to solve the govering conservation equations for both phases. Section 5 deals with the
test cases examined. These include narrow-cone diesel spray cases and hollow-cone fuel
spray cases. In both sets of cases the ability of the model to predict experimental data is
examined. Included here also are examinations of the effects of the spray submodels and
the effects of time step and grid densities on the predictions.
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2. MODEL FORMULATION

2.1. Droplet Size Distribution Function Moments

Define n(r) as a multiple of the probability density function of droplet radius, such that
the integral over all droplets provides the total number of droplets per unit total volume (not
unit liquid volume). This is designated by Q0, following the notation of Adam and Schnerr
[11], such that

∞∫
0

n(r) dr = Q0. (2)

This is the first of the distribution function moments. The i th moment can be written
similarly, as

Qi =
∞∫

0

n(r)r i dr. (3)

It is worth noting a few properties of the quantities defined here. For any representation of a
droplet size distribution function the assumption is made that the droplets are approximately
spherical. Using this assumption, it can be seen that the moments Q2 and Q3 represent
physical quantities, the knowledge of which is very useful for modelling sprays. The surface
area of the droplets per unit total volume is 4π Q2, and the liquid volume per unit total volume
(that is, the fractional volume of liquid) is given as

Vl

Vcell
= 4π Q3

3
. (4)

As mean droplet diameters are often used to characterise the droplet sizes in a spray, it is
useful to note that the four parameters (Q0 to Q3) provide all mean droplet diameters from
D10 to D32, as, by definition,

D p−q
pq = 2p−q Q p

Qq
. (5)

A good discussion of droplet distribution moments and their relationship to mean droplet
diameters in sprays is given by Sowa [12]. Hence it can be seen that the first four moments
contain a great deal of information about the spray. Starting from this point, [1] and [2] use
these parameters to build a fully polydisperse spray model without the need to separate the
droplets into size classes.

In many respects the most important of the first four moments is Q3, because assuming
all droplets have the same density (locally), this parameter defines the mass of liquid present
per unit volume. This means that the transport equation for Q3, presented in the following
section, is in fact equivalent to a liquid phase continuity equation. This suggests strongly
that any modelling done using these moments must at least consider this fourth moment,
and it will be seen later that the modelling of the spray phenomena will also require values
for the first three.
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2.2. Moment-Average Quantities

To write Eulerian transport equations for the droplet moments, the speed at which the
moments are to be convected must be defined. This is not a trivial problem as, in general,
the droplets are travelling at a variety of different velocities. Logically the net convection
of mass would occur at the mass-average velocity, and the net convection of droplet surface
area (say) would occur at the surface-area-average velocity, and there is no reason for these
two values to be the same. Larger droplets experience less drag and generally have higher
velocities than the smaller droplets, and this is reflected by the mass-average velocity being
higher than the surface-area-average velocity. From the definitions of the droplet moments,
the mass-average velocity is the correct velocity at which to convect Q3 and the surface-
area-average velocity is the correct velocity at which to convect Q2. The same idea can
also be applied to moment-average energies to capture the effect of small droplets heating
up more quickly than large droplets. Hence these moment-average quantities convect the
moments such that they are not all convected at the same rate. This results in the moments
providing a representation of the distribution of droplet sizes at each point, and the moment-
average velocities providing the means by which the distribution of droplet sizes can change
in time and space. The two concepts allied together are capable of providing a picture of
the behaviour of a polydisperse spray.

The moment average, �i , of a quantity � averaged over the i th moment Qi is defined as

�i =
∫ ∞

0 r i n(r)� dr

Qi
. (6)

This model is not concerned with knowing the velocity of every droplet, as is usually the
case in the discrete droplet model where velocities are required for each of the representative
drops that are tracked, but uses a selection of average velocities and their relationship to
each other to determine how the size distribution evolves at each point in space. The key
question is whether this continuum averaging gives as good a representation of the spray
and its dynamics as can be obtained by discretising the droplets into size groups.

2.3. Liquid-Phase Transport Equations

To write equations for mass and momentum in a two-phase flow, it is necessary to define
the void fraction θ , which is the volume fraction of gas in each computational grid cell (or
indeed any control volume). This is given by

θ = 1 − Vl

Vcell
, (7)

which can be calculated directly from the third moment of the droplet size distribution
function through (4). The transport equation for the third droplet moment is written as the
liquid mass conservation equation

∂

∂t
(ρl(1 − θ)) + ∂

∂x j
(ρl(1 − θ)Ul3 j ) = −Sm . (8)

The convection velocity required is the moment-average value Ul3, obtained from (6) by



SPRAY SUBMODELS BASED ON SIZE MOMENTS 591

setting i = 3 and � = Ul . The source term Sm in (8) has only one contribution due to
evaporation as the other phenomena considered do not affect the total mass of liquid present.

The equations for the remaining moments take a similar form, but more care must be
taken because of the requirement for more source terms due to the changes effected by
droplet breakup, droplet–droplet collisions, and evaporation and changes in the droplet
density. The source terms that are related to the hydrodynamics of the spray are discussed
in detail in Section 3. Those related to heat and mass transfer between the phases are the
subject of another publication [3] but are also discussed by Beck [1]. The equations are

∂

∂t
(Qi ) + ∂

∂x j
(QiUli j ) = −SQi . (9)

Use of the ith moment-average velocity in these equations should be noted. In the present
version of the model, these equations are solved only for i = 2, i.e., for the surface-area
moment, for reasons explained in Section 3.2. SQi is a source term calculated from the
submodels of Section 3.

The liquid-phase momentum equation, as used in the calculation scheme, is based on the
work of Harlow and Amsden [13] for particulate flows. It is derived in [1] and [2] and is
written as

∂

∂t
(ρl(1 − θ)Ul3i ) + ∂

∂x j
(ρl(1 − θ)Ul3iUl3 j ) + Ul3i Sm

= ∂

∂x j

(
ρl(1 − θ)σννl

∂Ul3i

∂x j

)
− SUi . (10)

The equations for the other moment-average velocities follow the same pattern, the
subscript k denoting the moment number. Thus

∂

∂t
(QkUlk j ) + ∂

∂x j
(QkUlkiUlk j ) + ∂

∂x j
(Qk(Ul3i − Ulki )(Ul3 j − Ulkj ))

+ Ul3i BQk + Ulki
(

SQk − BQk

)
= ∂

∂x j

(
Qkσννl

∂Ulki

∂x j

)
− SUki , (11)

but there are important differences, notably the third term on the left-hand side of (11). The
reasons for the existence of this term are given in [1] and [2]. Again, this equation is solved
only for k = 2 in the present version of the model.

In the complete model, an equation for liquid-phase energy conservation is also solved
[1–3], but this will not be considered here.

2.4. Gas-Phase Transport Equations

The gaseous mass transport equation is written as

∂

∂t
(θρg) + ∂

∂x j
(θρgUgj ) = Sm, (12)

where Sm is the mass transferred from the liquid phase to the gas phase per unit time within
a control volume. The gaseous momentum equation, including turbulence effects, is written
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as

∂

∂t
(θρgUgi ) + ∂

∂x j
(θρgUgjUgi ) − Ugi

(
∂

∂t
(θρg) + ∂

∂x j
(θρgUgj )

)

= ∂

∂x j

(
µeff θ

(
∂Ugi

∂x j
+ ∂Ugj

∂xi

))
− θ

∂ P

∂xi
− ∂

∂x j

(
2

3
θρgkδi j

)
+ Sm(Uli − Ugi ) + SUi .

(13)

The effective viscosity µeff is given by

µeff = µlam + ρgCµ

k2

ε
, (14)

where Cµ = 0.09 and k and ε are the turbulent kinetic energy and its dissipation rate
respectively.

The source term SUi in (13) is the momentum exchanged from the liquid to the gas per
unit time in a control volume. In a single-phase flow, the third term on the left-hand side of
(13) is zero as it is a multiple of the continuity equation. Due to interphase mass transfer
this can be nonzero in two-phase flow and is hence included. The penultimate term on the
right-hand side of (13) is described by Mostafa and Mongia [7] as the momentum growth
term, and it results from the initial relative velocity between the generated vapour (initially
travelling at liquid velocity) and the carrier gas.

In the complete model, equations are solved for the gas-phase energy conservation and
also for the vapour mass fraction. Gaseous properties are also written as a function of vapour
mass fraction [1–3].

The turbulence model employed is the two-equation model of Launder and Spalding
[14], with the equations being solved for the turbulence kinetic energy and its dissipation
rate. The equations are

∂

∂t
(θρgk) + ∂

∂x j
(θρgUgj k) − kSm = ∂

∂x j

(
µeff

σk
θ

(
∂k

∂x j

))
+ θ Pk − ρgεθ (15)

and

∂

∂t
(θρgε) + ∂

∂x j
(θρgUgjε) − εSm

= ∂

∂x j

(
µeff

σε

θ

(
∂ε

∂x j

))
+ θCε1 Pk

ε

k
− θCε2

ρgε
2

k
+ θCε3ρgε

∂Ugj

∂x j
. (16)

The turbulence kinetic energy production rate is given by

Pk = ρgCµ

k2

ε

(
∂Ugi

∂x j
+ ∂Ugj

∂xi

)
∂Ugj

∂xi
. (17)

The constants take the values Cε1 = 1.44, Cε2 = 1.92, Cε3 = −0.373, σt = 0.9, σk = 1.0, and
σε = 1.3. The term involving Cε3 is an addition due to the effect of the liquid phase on the
gas-phase turbulence. All the source terms are calculated by considering the effect of the
gas phase on the liquid phase in terms of the droplet size distribution function moments.
This is discussed in detail, and the source terms are derived, in Section 3.
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3. SPRAY SUBMODELS

To form a complete simulation of spray behaviour, many phenomena found in sprays
require modelling. In general, these models are more naturally described in a Lagrangian
framework, and hence the majority are written in this form, although all are incorporated
into an Eulerian frame within the current model.

3.1. Initial and Boundary Conditions

Although not strictly a submodel, a brief discussion of the inlet conditions will be given
here, as the model assumes the spray to be fully atomised at the nozzle exit. The treatment
of the spray injection is based on the injection cell treatment of Watkins [15]. The injector
is located within this cell, it is assumed that the gas has entrained to the liquid velocity by
the downstream face of the cell, and the velocities and void fraction are calculated there by
one-dimensional inviscid flow analysis.

The main difference in this work from the injection cell treatment of [15] is that the
injection domain is composed of more than one cell. The main reason is that this allows
a greater range of radial velocities to be applied to the spray at inlet, given that the liquid
velocities are applied at cell faces, and that there are no droplet groups. The fineness of
grid with which this model is able to work allows the injection domain to be composed of a
number of cells (up to five radial cells have been used successfully) and yet be smaller than
the injection domain used in most DDM calculations. A schematic of the injection domain
for a full-cone spray is presented as Fig. 1.

The injection velocity of the liquid is calculated via a Bernoulli argument, such that

Uinj = CD

√
2(Pinj − Pg)

ρl
, (18)

where the coefficient of discharge is taken as 0.7 if not quoted in the literature. Similarly,

FIG. 1. Injection domain and parameters for a solid cone spray.
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the spray cone half-angle, β, is usually taken from the literature, but for pressure-atomised
sprays the correlation of Ranz [16] is used if the angle is unspecified.

The conditions at the downstream face of the domain are obtained from two equations
that can be found in O’Rourke [17], the first from the continuity of liquid mass,

ρlUinjπr2
inj = ρl(1 − θ)πr2

0 U0, (19)

and the second from the conservation of axial momentum,

ρlU
2
injπr2

inj = ρl(1 − θ)πr2
0 U 2

0 + ρgθπr2
0 U 2

0 . (20)

where r0 is the radius of the downstream face given by

r0 = rinj + H tan β (21)

and H is the axial length of the injection cell specified in the initial conditions. These
equations can be solved simultaneously to give the downstream axial velocity and the void
fraction at the downstream face as

U0 = Uinj




−[
1 − ρg

ρl

] +
{[

1 − ρg

ρl

]2 + 4ρgr2
0

ρl r2
inj

} 1
2

2ρgr2
0

ρl r2
inj


 (22)

and

θ = 1 − Uinj

U0

(
r2

inj

r2
0

)
, (23)

respectively. The radial velocities are given as

V0i = U0 tan

(
β

ri

r0

)
, (24)

where ri is the radial distance from the axis of the i th radial grid line in the injection domain.
The velocity of the gas entrained into the injection cell from the sides is calculated via a
continuity argument as

Vg0 = − r0

2H
U0. (25)

The injection conditions for a hollow cone spray are set up in a similar fashion. It should
be noted that no attempt is made here to simulate the breakup of liquid sheets, as is done,
for example, by Senecal et al. [18]. Rather, the sheet is presumed to break up across the
injection domain and to be fully atomised at the downstream face.

The injection cell layout for a hollow-cone spray is shown in Fig. 2. As the sheet is usually
thin, the domain is set up such that only one cell has liquid crossing its downstream face. The
injection velocities and sheet thickness at nozzle exit are taken from the literature. Equations
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FIG. 2. Injection domain and parameters for a hollow cone spray.

similar to (22) and (23) can be written for the hollow-cone case, and the downstream face
velocity and void fraction are given by

U0 = Uinj


−[

1 − ρg

ρl

] +
{[

1 − ρg

ρl

]2 + 4ρg(r2
0 − r2

t )
ρl (2rinjh − h2)

} 1
2

2ρg(r2
0 − r2

t )
ρl (2rinjh − h2)


 (26)

and

θ = 1 − Uinj

U0

(
2rinjh − h2

r2
0 − r2

t

)
, (27)

where rt and r0 are given by

rt = (rinj − h) + H tan

(
α − β

2

)
(28)

and

r0 = rinj + H tan

(
α + β

2

)
(29)

and h is the liquid sheet thickness at the nozzle. The radial velocity is given as

V0 = U0 tan α, (30)

and the velocities of the gas entering the domain from the sides are given by

Vg0 = −
(
r2

0 − r2
t

)
2Hr0

U0. (31)

Using the calculated value of the void fraction at the downstream face of the injection
domain, the value of Q3 can be calculated via (4). The value of Q2 is then calculated via
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a prescribed inlet Sauter mean radius (SMR), usually the reference SMR, and the initial
conditions for the other two moments can then be calculated from the truncated assumed
distribution (see Section 3.2). The inlet values of the mass- and surface area-averaged axial
and radial velocity components are set equal to U0 and V0, respectively.

Boundary conditions are required at the edges of the spray where no flux of liquid
momentum or energy is allowed from a control volume in which no liquid is present. This
is required due to the staggered grid employed. The other boundary conditions imposed on
the liquid phase are the centre-line symmetry condition and zero normal gradients at outlet.

3.2. Droplet Size Distribution Assumptions

Accurate representation of the spectrum of droplet sizes is essential in the modelling
of polydisperse sprays. Initially the calculation scheme was intended to provide enough
information about the droplet size distribution to model the spray by predicting the first
four moments of the number distribution function via transport equations. The breakup and
collisions models detailed here require some way of predicting the surface area or total
radius of part of the distribution, and not the whole. The only way to do this is to produce
some function that approximates the droplet size distribution function and has moments
that match those provided by the distribution function. Therefore the function has four
constraints, one of which is a normalisation constraint. Finding a function that satisfies
these constraints is a nontrivial problem and has not been solved successfully.

The fact that the model would allow the four moments to be transported at different
velocities means that the polydisperse nature of the flow can be simulated. This, however,
causes its own problems. At the edge of the spray, where the droplet population is small,
significant differences in the moment-average velocities can result in a control volume
that previously contained no liquid receiving a significant liquid mass but having a very
small droplet number. The droplet sizes inferred from this by the submodels can become
unrealistically large and the source terms produced then become very large, resulting in
the scheme failing. It has proved too great a task to date to ensure that all four velocities
are similar enough at the spray edges for the scheme to be reliable in most cases. The
approximations made in the derivation of (11) are certainly more valid for the surface area
and volume moments (Q2 and Q3) than for the other two. This suggests the idea that
transport equations can be solved for just these two moments and their respective moment-
average velocities by using an approximate distribution function based on the calculated
moments to be used to estimate the remaining moments. This has two advantages over the
four-moment approach. First, the moment-average velocities used are both fewer and more
reliable, allowing a greater likelihood of being able to keep the scheme stable at the spray
periphery. Second, fewer transport equations are being solved, which reduces the amount
of computational work done.

The SMR is generally considered the most important parameter in the size distribution
function, and so it would seem sensible to use the SMR as the parameter required in a
two-moment distribution function. Other desirable qualities in this distribution function are
accurate representation of typical droplet size distributions and ease of analytic integration,
thereby avoiding having to perform numerical integrations.

An analytically integrable function to use as a number distribution was sought such that
the volume distribution it produced was a reasonable approximation to a Rosin–Rammler
distribution. This is a regularly used distribution in spray models, and as such it is a sensible
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choice. It should be noted that any analytically integrable probability density function
may be used in the scheme, so there is scope for research into using different reference
distributions for different types of spray flow. The Rosin–Rammler volume distribution is
defined as

v(r) =
(

αR

rαR
R

)
rαR−1 exp

(
−

(
r

rR

)αR
)

, (32)

where rR is known as the Rosin–Rammler mean radius and αR the Rosin–Rammler expo-
nent. The Rosin–Rammler mean radius is the droplet radius for which 63% of the liquid
mass is made up of droplets with smaller radii. The shape of the distribution is determined
by the exponent, and the majority of sprays have distributions with exponents between the
values of 2 and 4, and mostly at the lower end of this range, as reported by Wang and
Lefebvre [19]. Thus the shape was chosen to match a Rosin–Rammler distribution of
exponent 2. The number distribution found is

n(r) = 16r

r2
32

exp

(
− 4r

r32

)
, (33)

where the SMR r32 is used because all the droplet moments are defined in terms of the
droplet radii, and it is not equal to the Rosin–Rammler mean radius. The comparison of the
volume distribution produced by this approximation with the Rosin–Rammler distribution
is made in Fig. 3.

The approach used is to consider the initial full distribution as a reference distribution
based on a reference SMR which is invariant, and changes in the local SMR are obtained
by truncating the distribution to match the SMR as predicted by the transport equations for
Q3 and Q2. Values of SMR larger than the reference value are obtained by removing the
small droplets from the distribution (Fig. 4), and SMR values smaller than the reference
value are obtained by removing the large droplets from the distribution (Fig. 5). The other
two moments can then be found from this truncated distribution. This model is equivalent
to assuming that the change in the droplet size distribution is due to only larger droplets

FIG. 3. Comparison of simplified distribution used in the model with the Rosin–Rammler distribution of
exponent 2.
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FIG. 4. Distribution truncated to remove small droplets when the calculated SMR is larger than the refe-
rence SMR.

being convected into some regions of the spray and only small droplets reaching other
regions. The key reason for choosing this approach is that the truncated distribution tends
towards having monodisperse behaviour, whichever end is being truncated. Therefore, once
a certain droplet size is reached at the spray periphery, the moment-average velocities can
be considered to be identical, and hence the instability problems can be completely solved.
Details of the truncation procedure can be found in Beck [1].

3.3. Interphase Drag

This model provides the momentum transfer source term for the gas-phase momentum
equation and both the moment-average liquid velocity equations. The change in the liquid
momentum due to drag is given for a group, k, of droplets with identical properties as

ρlγk
DUkj

Dt
. (34)

FIG. 5. Distribution truncated to remove large droplets when the calculated SMR is smaller than the
reference SMR.
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Integrating this over all droplets gives the total change in liquid momentum,

SU3 j =
∞∫

0

4π

3
ρln(r)r3 DU j

Dt
dr. (35)

For the present version of the model, the radius-dependent Lagrangian derivative is given
by

DU j

Dt
= 3

8

ρg

ρl

|Urel|
r

CdUrel,j, (36)

and the drag coefficient, which is also radius dependent, is given by the correlation of Wallis
[20] for a solid sphere, where

Cd = 0.424 Re > 1000,
(37)

Cd = 24

(
1

Re
+ 0.15 Re−0.313

)
Re < 1000,

and the Reynolds number is given as

Re = 2ρg|Urel|r
µg

. (38)

Other relations could be used in (36) and (37). These would affect the details of the deriva-
tions that follow, but not the substance.

One more key approximation is made in the modelling of this source term. The relative
velocity between the liquid and the gas is taken to be constant with radius, with the value
taken to be equal to the difference between the mass-average liquid velocity and the gas
velocity. This assumption is justified by realising that the change in momentum of the spray
as a whole locally is dominated by the changes in velocities of the large droplets, as these
contain most of the spray momentum. The velocity of the large droplets is well approximated
by the mass-average velocity. The added advantage of using this approximation is that it
ensures that the liquid mass-average and gas velocities tend towards each other as the spray
propagates downstream.

The Reynolds number of a droplet in a practical spray flow can only exceed 1000 in
the near nozzle region in a very high pressure, high-speed spray, and hence droplets with
Reynolds numbers over 1000 are not considered. The source term can now be written as

SU3 j =
∞∫

0

ρgπ

2
n(r)r2|Urel|Urel,j

(
24µg

2ρg|Urel|r + 3.6

(
µg

2ρg|Urel|r
)0.313)

dr. (39)

Multiplying this out gives

SU3 j =
∞∫

0

(
6πn(r)rUrel, jµg + 1.8π

(
µg

2

)0.313

(ρg|Urel|)0.687Urel,jn(r)r1.687

)
dr. (40)



600 BECK AND WATKINS

Noninteger values of the radius are integrated by geometric interpolation between the sur-
rounding moments. The right-hand side of these equation can now be integrated to give the
final form of the source term:

SU3 j = 6πµgUrel,j Q1 + 1.8π(ρg|Urel|Q2)
0.687

(
µg Q1

2

)0.313

Urel,j. (41)

A similar derivation is performed for the liquid surface-area average velocity source term.
This time the source term is given by

SU2 j =
∞∫

0

n(r)r2 DU j

Dt
dr, (42)

and the relative velocity used on this occasion is the difference between the surface-area-
average velocity and the gas velocity. This again ensures that the surface-area-average
velocity and the gas velocity tend towards each other as the spray propagates downstream.
Inserting the models for the Lagrangian derivative and the drag coefficient, and integrating,
gives the source term as

SU2 j = 9

2

Q0

ρl
Urel,jµg + 1.35

ρl
(ρg|Urel|Q1)

0.687

(
µg Q0

2

)0.313

Urel,j. (43)

3.4. Droplet Breakup Model

This model accounts for the effect on the droplet distribution function moments of the
breakup of unstable droplets. There are generally considered to be three types of droplet
instability (see, for example, Liu and Reitz [21]); they can undergo bag breakup, stripping
breakup, and surface wave breakup. The last of these is mainly seen in the initial atomi-
sation of the spray, and so the models described here only consider the other two. These
models agree reasonably well with the thresholds determined by Nicholls [22], which are
straightforward in nature and have been used in many DDM codes. The thresholds are

We = ρgU 2
relr

σ
= 6.0 (44)

for bag breakup and

We√
Re

= 0.5 (45)

for stripping breakup. To break up, not only are the droplets required to reach these unstable
threshold parameters, but also sufficient time is required. The breakup times used with the
Nicholls parameters are

tb = π

(
ρlr3

2σ

) 1
2

(46)

and

ts = Cs
r

Urel

(
ρl

ρg

) 1
2

. (47)
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Nicholls took the constant Cs to be of order unity, but Reitz and Diwakar [23] argue that
a value of 20 is suggested by empirical data. For the calculations presented in Section 5,
Cs = 1.0 has been used and has been found to give good predictions of experimental data
on drop sizes.

The correlation of [22] for stripping breakup (45) can be rearranged to give a critical
radius, above which the droplets are unstable, by assuming that the droplets which are large
enough to break are travelling at approximately the mass-average velocity. The critical
radius can then be evaluated as

rs = σ 2

2ρgU 3
relµg

. (48)

Similarly, the critical radius above which bag breakup occurs can be written as

rb = 3σ

ρgU 2
rel

. (49)

Using these critical radii, and the fact that stripping breakup occurs in preference to bag
breakup, the number of droplets potentially undergoing each type of breakup can be ap-
proximated by use of the assumed droplet size distribution function. The proportion of these
droplets actually breaking up within a time step is given by

δt

tr
, (50)

where δt is the time step and tr is the time taken for an unstable droplet to breakup, as given
for each breakup regime in (46) and (47) respectively.

The second, and much more difficult, aspect of modelling droplet breakup is to determine
the results. Faeth et al. [24] use a physical argument to determine the resultant drop sizes,
although they suggest that the value should be taken as a resultant Sauter mean diameter
rather than the exact diameter of all droplets. This is based on the findings of Simmons
[25] that the droplet size distribution produced by atomising droplets is characterised by a
single distribution function moment, for example the SMR. The idea behind this model is
that the drop sizes after breakup are related to the thickness of the laminar boundary layer
of the droplet resulting from the motion of the droplet through the carrier gas, the similarity
between the shear breakup of drops and the primary breakup of nonturbulent liquids having
being noted by Hsiang and Faeth [26]. The validity of this model has been questioned by
Liu and Reitz [27], whose experiments on drop breakup show that there is little dependence
on the droplet Reynolds number. However, the correlation of [24] provides a useful starting
point from which to build the outcome of the drop breakup within the context of the current
methodology. Alternative formulations can easily be implemented in its place at a later date.

The correlation can be rearranged to give

r32,out = 6.2

(
ρl

ρg

) 1
4
(

µl

2ρlUrel

) 1
2

r
1
2

in, (51)

which is valid for stripping breakup, the dominant form of breakup in the high-pressure
sprays in which secondary breakup is important. Now, by assuming that the droplet volume
is preserved in the breakup process (that is, there is no change in density and liquid mass is
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conserved), the change in the second droplet moment due to the breakup of a single drop is
given by

Q2,out − Q2,in = r3
in

6.2
(

ρl

ρg

) 1
4
(

µl

2ρlUrel

) 1
2 r

1
2

in

− r3
in

rin
. (52)

For stripping breakup, the change in the surface area per unit time for a single droplet is
given by dividing by the appropriate residence time for an unstable droplet, thus

SQ2,s = (Q2,s Q1,s)
1
2

6.2
(

ρl

ρg

) 1
4
(

µl

2ρlUrel

) 1
2 Cs

Urel

(
ρl

ρg

) 1
2

− Q1,s

Cs
Urel

(
ρl

ρg

) 1
2

, (53)

and Q1,s and Q2,s are the sum of radii and total sum of squares of radii undergoing stripping
breakup.

For bag breakup, no appropriate correlation has been found in the literature, and so the
surface area is assumed to double in the breakup, which is equivalent to the production of
eight equally sized droplets. Thus

δQ2

δt
= r

1
2

in

π
(

ρl

2σ

) 1
2

. (54)

Summing this over the appropriate droplets, and geometrically interpolating between the
surrounding moments to integrate over noninteger powers of the radius, gives

SQ2,b = (Q0,b Q1,b)
1
2

π
(

ρl

2σ

) 1
2

, (55)

where Q1,b and Q0,b represent the sum of radii and total number of the droplets undergoing
bag breakup.

These two contributions to the change in the surface-area droplet distribution moment are
then summed to give the total change in the moment equation source term due to breakup.
Note that these contributions to the SQ2 source terms are also denoted as BQ2 in Eq. (11) for
surface-area-averaged momentum conservation. As this model only provides a value for the
change in the Q2 droplet moment, it is only appropriate for use when transport equations
are being solved for only the Q2 and Q3 moments, with the other two being approximated
from a presumed distribution.

3.5. Droplet–Droplet Collision Models

The collisions model is semiempirical and has three stages. The first stage is to determine
the number of collisions between droplets occurring in any control volume. This is based
on the collision frequency concept of O’Rourke and Bracco [28] that uses the assertion that
the probability of n collisions between droplets in two different parcels in the same control
volume in one time step can be modelled as a Poisson distribution, such that the proba-
bility is

Pn = e−n̄ n̄n

n!
, (56)
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where n̄ is the average number of collisions, given by

n̄ = cπ

Vcell
(r1 + r2)

2Urelδt, (57)

and the parcels contain droplets of radii r1 > r2. The number of droplets in the parcel with
the smaller droplet diameter is denoted by c. A uniform random variable in [0, 1] is then
used to determine whether a collision takes place. The probability of collision between two
droplets per unit volume per unit time, providing they are in the same control volume, is
then given by

pcoll = π

V 2
cell

(ri + r j )
2Urel. (58)

Since droplet parcels do not exist in the current methodology, an equivalent form involving
the drop number distribution moments is required. This is obtained by multiplying the
collision probability by the appropriate number distributions and integrating over all drops.
In so doing each probability of collision is considered twice, so the number of collisions
per unit volume per unit time is given by

Ncoll = 1

2

π

V 2
cell

∫ ∫
(ri + r j )

2Ureln(ri )n(r j ) dri dr j . (59)

In this equation Urel is a function of ri and r j . However, the form of this function is not
known, hence, to date in the model it has been approximated by assuming a mean relative
value between all colliding drops. With this assumption

Ncoll = CcollπŪrel
(

Q0 Q2 + Q2
1

)
, (60)

where the power of Vcell is reduced by 2 because the Qi measure the droplet moments per
unit volume. Ccoll is a model constant introduced due to the prediction of large numbers of
collisions with this model. It is usually taken as 0.15, as discussed in Section 4. The relative
velocity between droplets is approximated by assuming that the large droplets are travelling
at approximately the mass-average velocity and that the small droplets have been fully
entrained to the gas velocity. This means that the average droplet–droplet relative velocity
is approximated as one-half of the relative velocity between the mass-average liquid velocity
and the local gas velocity. The need to model the average relative velocity is not required in
Lagrangian models and can be considered a weakness of using an Eulerian approach. This
is the likely reason for the need of the model constant Ccoll, which is not used in Lagrangian
models.

The second stage of the model determines how many of these collisions result in each
of the regimes of coalescence, bounce, and separation described by Orme [29]. The two
parameters required to determine these proportions are the Weber number, defined as

We = 2rρl Ūrel

σ
, (61)

and the impact parameter b. The impact parameter is defined as the perpendicular distance
from the centre of one droplet to the relative velocity vector placed on the centre of the
other droplet at impact, normalised by the sum of the radii. This is illustrated in Fig. 6.
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FIG. 6. The perpendicular distance between centres at impact as used in the impact parameter definition.

Jiang et al. [30] provide a map of the different regimes on a graph of Weber number against
impact parameter, which is presented here as Fig. 7. This chart is for hydrocarbon droplets
and is simplified for the model and taken to be that presented as Fig. 8. It is worth noting
that the thresholds between regimes are slightly dependent on the ambient pressure. The
chart used is based on an ambient pressure of 0.1 MPa.

The critical Weber numbers shown on the chart are now translated into critical radii (as
in the breakup model), and an assumed distribution is used to determine the probability that
any given droplet lies between adjacent critical radii. The outcome of a collision is decided
by the Weber number of the smaller droplet, according to [29], and the impact parameter.
For the hydrocarbon droplets, there exist three critical radii, and the probability that the
smaller radius of the two colliding droplets falls between given critical radii is given by

P(rsmaller < ra) = P(r < ra)(2 − P(r < ra)), (62a)

FIG. 7. Transition criteria between regimes of collision between hydrocarbon droplets. Adapted from Jiang
et al. [30].
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FIG. 8. Simplified schematic of collision regimes transition criteria for hydrocarbon droplets as used in the
model for determining the probability of each occurring.

P(rb < rsmaller < rc) = P(rb < r < rc)(P(rb < r < rc) + 2P(r > rc)), (62b)

P(rsmaller > rc) = P(r > rc)
2, (62c)

by considering the sizes of the two droplets as independent events. These values are given
by summing the probability of the first droplet being in the desired radius range and the
second droplet being at least this size and the probability that the second droplet is in the
desired radius range with the first droplet being in a larger radius range. The probability of
the smaller droplet falling between ra and rb is not of interest in this case as these droplets
undergo bounce. The collisions undergoing the bounce regime can be ignored in this model
because the total mass, surface area, and momentum of the liquid are conserved during a
bounce collision, and hence there is no net change to any of the spray parameters considered
in the model.

Modelling the impact parameter as a uniform random variable on [0, 1], as all values are
equally likely, acts to determine what proportion of the collisions occurring with the smaller
droplet between given critical radii result in each collision regime. Thus Fig. 8 shows that
where the smaller droplet has radius less than ra the probability of a collision resulting
in coalescence is 0.6, and the probability of a bounce collision is 0.4. In the same way
the probabilities of the coalescence and separation regimes given the radius of the smaller
droplet can be approximated. The values are given in Table I.

TABLE I

Probabilities of Collision Outcome for

Hydrocarbon Droplets Given the Radius of

the Smaller Droplet

Pcoll Psep

rsmaller < ra 0.6 0
rb < rsmaller < rc 0.5 0
rsmaller > rc 0.2 0.8
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TABLE II

Determination of Surface Area Change for Collisions between Hydrocarbon Droplets

Initial droplet size, rin Change in square of radius

rsmaller < ra ra δQ2,a = (22/3 − 2)r 2
in = −0.41r 2

in

rb < rsmaller < rc 0.5(rb + rc) δQ2,b = (22/3 − 2)r 2
in = −0.41r 2

in

rsmaller > rc (coalescence) rc δQ2,c = (22/3 − 2)r 2
in = −0.41r 2

in

rsmaller > rc (separation) rc δQ2,sep = (5 · (0.4)2/3 − 2)r 2
in = 0.71r 2

in

Hence the total coalescence probability for hydrocarbon droplets can be given as

Pcoal = Pcoal,a + Pcoal,b + Pcoal,c, (63)

where

Pcoal,a = 0.6P(r < ra)(2 − P(r < ra)), (64a)

Pcoal,b = 0.5P(rb < r < rc)(P(rb < r < rc) + 2P(r > rc)), (64b)

Pcoal,c = 0.2P(r > rc)
2 (64c)

are the probabilities of a collision with the smaller droplet between each set of critical radii.
The probability of separation is more straightforwardly

Psep = 0.8P(r > rc)
2. (65)

The final stage of the collisions model is to determine the effect of the predicted collisions on
the droplet moments, specifically the surface area, as the liquid mass is conserved during the
collision. The surface area change is considered to be approximated by that obtained from
a collision between two droplets of equal radius and to result in either one (coalescence) or
five (separation) droplets, also of equal radius, such that the droplet volume is conserved.
The effect of changing the number of droplets produced in separation has not been tested.
The radius of the drops entering the collision, rin, is dependent on the Weber number,
and the values it takes for each regime are presented in Table II for hydrocarbon droplets,
along with the change in the square of the radius, δQ2, resulting from the collision.

Hence the final source term for the surface area moment is

SQ2,coll = Ncoll(Pcoll,aδQ2,a + Pcoll,bδQ2,b + Pcoll,cδQ2,c + PsepδQ2,sep), (66)

where the Pcoll derived here are for hydrocarbon droplets. Similar equations and tables have
been produced by Beck [1] for water droplet collisions.

4. COMPUTATIONAL SCHEME

4.1. Introduction

This section presents an outline of the implementation of the mathematical framework
described in the previous sections into a finite-volume computational model. Of particular
interest here is the way in which the liquid-phase equations are treated and incorporated
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TABLE III

Values of X, ρ, SL, Uj, ΓΦ Used in each Transport Equation

Equation, � X ρ SL U j ��

Liquid phase mass average velocity, Ul3 1 − θ ρl Sm Ul3 j ρlσvν1

Liquid phase surface area velocity, Ul2 Q2 1 SQ2 Ul2 j σvν1

Liquid volume, Q3 1 ρl 0 Ul3 j 0
Liquid surface area, Q2 1 1 0 Ul2 j 0
Gas phase continuity, 1 θ ρg 0 Ugj 0
Gas phase momentum, Ug θ ρg −Sm Ugj µeff

Turbulence energy, k θ ρg −Sm Ugj µeff/σk

Turbulence energy dissipation rate, ε θ ρg −Sm Ugj µeff/σε

into an existing single-phase solution scheme. The manner in which the transport equations
are discretised is discussed in Section 4.2. Section 4.3 presents the PISO-based solution
algorithm.

4.2. Discretisation

The equations being solved fall into three categories, the gas-phase transport equations,
the liquid-phase transport equations, and the droplet moment equations. All these equations
can be written in the general form

∂

∂t
(Xρ�) + ∂

∂x j
(Xρ�U j ) + �SL = ∂

∂x j

(
X��

∂�

∂x j

)
+ S�. (67)

The values taken for the variables X , ρ, SL , U j , and �� for each equation are listed in
Table III. S� is the relevant source term as derived in Sections 2 and 3.

This general transport equation is then discretised in a finite-volume framework. It is
integrated over a control volume and a time interval δt . This is a standard procedure that
has been presented many times before for single-phase flow calculations (see, e.g., Versteeg
and Malalasekera [31]) and so will not be presented in detail. However, the approaches used
are outlined here.

The equations are all solved on the same two-dimensional, axisymmetric, orthogonal
computational grid. The backward staggered grid approach is used, which involves defining
a central control volume for the gas pressure and other scalar variables, including the
moments Q2 and Q3, and displaced volumes for the gas and liquid velocities. This has the
advantage of strongly coupling the gas velocity and pressure and also results in the ability to
check continuity for both phases over the central volume without the need for interpolation.

The temporal differencing is performed using the Euler implicit discretisation method.
This results in a fully implicit scheme that allows larger time steps to be taken before the
scheme becomes unstable. This is generally a good idea in the modelling of spray flows, as a
fine grid is required around the nozzle region to resolve the large dependency on inlet condi-
tions. An explicit scheme, for stability, requires prohibitively small time steps. This is espe-
cially the case when considering the large injection velocities of high-pressure diesel sprays.

Spatial discretisation of the velocity equations for both phases and the turbulence model
equations is done using the hybrid scheme of Spalding [32]. This involves using a
second-order-accurate central-differencing scheme for computational cells with low
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Reynolds numbers and a first-order upwind scheme for cells with high Reynolds numbers.
This enhances stability, as the central differencing scheme is unstable at high Reynolds
numbers, but results in numerical diffusion. This is a very simple and not especially accu-
rate differencing scheme. It has been used mainly for its simplicity and robustness, as the
major part of the work being done is the design of equations that can adequately model the
physics of sprays. The moment equations, which lack a second-order diffusion term, are
treated using the first-order upwind scheme. The gas-phase continuity equation is not solved
directly. Instead it is used, along with truncated forms of the gas-phase momentum equa-
tions, to form pressure-correction equations. These, when solved, determine corrections
to the gas-phase pressure, density, and velocity components. The details of this process,
embodied within the PISO algorithm, are given by Issa [33]. The liquid-phase momentum
equations do not need this procedure, because they lack the pressure-gradient source term.

4.3. Solution Algorithm

The solution algorithm is based on the PISO algorithm of Issa [33], with the liquid-phase
equations added into it. A key feature of the amended algorithm is that the spray solution is
obtained first, and then the reaction of the gas phase is calculated. This is the natural way
to proceed given the dominance of the spray in determining the flow field.

The PISO algorithm provides an efficient noniterative solution procedure that couples the
gas-phase pressure and velocity components by an operator-splitting technique and solves
the equations of motion for the gas phase in a predictor–corrector fashion. The current
scheme solves the liquid equations only once, at the beginning of the time step. Use of
corrector equations was tested [1], but it was found that the corrections obtained in the
corrector steps were very small. It was decided that the computational time saved in solving
the liquid equations only once in a time step was of greater benefit in comparison with a
very slight increase in accuracy. The stability of the scheme was unaffected.

The use of a noniterative scheme implies that some effects are lagged, i.e., carried forward
from one time step into the next. In the current approach, the droplet breakup and collision
effects are calculated at the end of the time step, and the amended source terms for the
Q2 equations and for the surface-area-averaged momentum equations are therefore carried
forward to the beginning of the next time step.

The solution proceeds in the following manner:

Step 1: Droplet size distribution moment transport equations. The transport equations (8)
and (9), for the moments Q2 and Q3 of the droplet size distribution function, are solved. The
void fraction is updated. Moments Q0 and Q1, requiring approximation from the assumed
distribution function, are calculated.

Step 2: Drag equation. The interphase drag source terms, Eqs. (41) and (43), are eval-
uated.

Step 3: Liquid-phase momentum equations. The transport equations (10) and (11), for
the moment-average velocities Ul2 and Ul3, are solved.

Step 4: Bulk adjustment. During spray injection, the volume available to the gas changes
due to some of the space now being filled with liquid. This effect is only appreciable in
the near-nozzle region. Nevertheless, a bulk adjustment is incorporated into the algorithm
to account for this, as it is relatively inexpensive. The gas-phase pressure and density are
updated.
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Step 5: Gas-phase momentum prediction. The gas-phase velocity components are pre-
dicted using the gas-phase momentum transport equations (13).

Step 6: First gas-phase momentum corrections. The first set of pressure-correction
equations are solved (see [1] and [33] for details). The gas-phase pressures, densities, and
velocity components are corrected.

Step 7: Second gas-phase momentum corrections. The second set of pressure-correction
equations are solved. The gas-phase pressures, densities, and velocity components are
corrected again.

Step 8: Gas-phase turbulence equations. Transport equations (15) and (16) are solved
for the turbulence kinetic energy and its dissipation rate. The equations are coupled and
iterated to convergence.

Step 9: Source term calculation for droplet dynamic effects. The effects considered
here are the breakup of unstable droplets and collisions between droplets. As detailed in
Section 3, source terms are provided for the effect of each of these phenomena on the Q2

transport equations and on the surface-area-averaged momentum equations.

The stability and robustness of this scheme has been demonstrated by the ability of the
method to obtain converged solutions of the equations for all the test cases that have been
attempted to date [1–3, 10]. The accuracy of the method has been partially assessed in these
publications and is further assessed in the following section of this paper, by comparisons
with experimental data on spray penetration and drop sizes for a number of test cases.

5. TEST CASES

5.1. Introduction

High-pressure, narrow-angle sprays have high injection velocities and spray penetration
results are often quoted, allowing assessment of the momentum transfer model. Also, the
high velocities result in much secondary breakup, thus testing the breakup modelling, and the
narrow sprays are relatively dense, resulting in enough collisions to validate the collisions
model. These sprays are strongly one dimensional, and the droplet sizes found at different
downstream distances are dependent mainly on breakup and collisions and are thus a good
indicator of the model performance.

The cases chosen for the submodel tests are the sprays of Hiroyasu and Kadota [34],
the physical conditions for which are given in Table IV. Penetration results, measured
photographically, and the spray SMR at 65 mm downstream from the nozzle, averaged over
axial spray cross sections, are given by the experiments; hence, the computational tests

TABLE IV

Test Conditions for the Data of Hiroyasu and Kadota [34]

Case H1 Case H2 Case H3

Ambient pressure (MPa) 1.1 3.0 5.0
Spray angle 10◦ 16◦ 21◦

Injection velocity (m s−1) 102.0 90.3 86.4
Droplet SMR at 65 mm (µm) 21.2 24.5 29.4
Injection pressure (MPa) 9.9 9.9 9.9
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FIG. 9. Grid used for the Hiroyasu and Kadota [34] test cases. The domain is 200-mm long and 37 mm in
radius with 109 × 73 cells.

will consider these same variables. The cross-sectional average Sauter mean radii given in
the computations are instantaneous values after 12 ms. Unfortunately, there is no precise
definition of the spray tip in either computation or experiment. Probably the most sen-
sible definition of the spray tip is the point behind which 99% of the spray mass is located.
This definition will be used throughout the work done on solid cone sprays. These test cases
have also been modelled, using a DDM scheme, by Reitz and Diwakar [23] and others,
providing a useful comparison with the results obtained by the new model.

For the present comparisons, a time step of 2 µs has been used. The maximum dimension
of the injection cell is 0.5 mm, in a 109 × 73 line grid, as shown in Fig. 9, and the droplets
have an inlet SMR and reference SMR of 20 µm in all cases. The spray cone angles were
estimated using the correlation of Ranz [16], and the diesel fuel has density 840 kg m−3.

For this model to be considered a widely applicable spray model, its performance in the
simulation of hollow-cone sprays must be tested. In particular, is the physics of the spray
described well enough in the model such that the change of computational injection scheme
discussed in Section 3.2 is sufficient for an accurate simulation of a hollow-cone spray?
Entrainment of a central gas jet where there are very few droplets (due to the hollow nature
of the spray) and successful capture of the collapse of the cone as indicated by spray width
data are of particular interest.

The definition of spray penetration is taken to be slightly different in this case because the
spray tip does not necessarily travel in an approximately straight line as in a solid-cone spray.
Hence the spray tips are much less densely populated and so the forwardmost 1% of the mass
occupies a significant part of the spray volume, stretching well back from the spray tip. To
gain meaningful results in this case, a useful definition for the spray tip is the axial distance
beyond which 1000 droplets are located. Similarly, the spray width is calculated as the radial
distance beyond which 100 droplets are located. The droplet numbers are obtained using
the values of Q0. The choice of different numbers of droplets to measure each dimension
reflects the fact that the spray tip is more densely populated than the spray edge.

The data used for comparison are those of Ren and Nally [35], who injected an n-heptane
spray using a pressure-swirl atomiser into air of different ambient pressures. Data were
obtained photographically for the spray penetration and the spray width over the first 2 ms.
The conditions for the experiment are given in Table V.

For the calculations, the time step used is 1 µs, and the injection cell has a maximum
side of length 0.5 mm. An inlet droplet SMR equal to the reference SMR of 15 µm is
used. The injection velocity and inlet sheet thickness were taken equal to the quoted values.
The injection pressure was 7.0 MPa, the spray thickness angle was calculated from the
correlation of Ranz [16], and the nozzle has a radius of 0.45 mm. The grid used is the same
as for the narrow-cone cases, shown in Fig. 9, except that the domain is stretched in the
radial direction to 80 mm to accommodate the wide-angle spray.
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TABLE V

Conditions for the Experiments of Ren and Nally [35]

Case R1 Case R2 Case R3

Ambient pressure (MPa) 0.1 0.45 0.93
Injection velocity (m s−1) 37.7 37.7 37.7
Nominal cone angle 80◦ 80◦ 80◦

Spray thickness angle 3.3◦ 7.0◦ 10.1◦

Sheet thickness at injector (µm) 195 195 195

5.2. Comparison with Experiment

Penetration results for narrow-cone sprays are presented as Fig. 10. Excellent agreement
can be seen between the experimental and computational results. Although penetration
is controlled by turbulence diffusivity, an accurate momentum transfer model is vital in
determining the predicted spray penetration. The use of the truncation approximation to
approximate the droplet size distribution and droplet moments is also supported as the
momentum transfer model is dependent on the values of all four moments. Clearly the
predicted values of the moments and momentum transfer must be acceptable for the model
to be able to produce penetration results of this accuracy. Figure 11 compares the droplet
SMR values predicted by the model with those predicted by Reitz and Diwakar [23] using
the DDM. The different treatment of the injection conditions makes comparisons between
the droplet sizes meaningless until the end of the breakup zone is reached. Hence results
are presented from 40 mm downstream of the nozzle. Also included in the figure is the
experimental result of Hiroyasu and Kadota [34] at 65 mm downstream of the injector.
The predicted increase in the droplet sizes with increasing ambient density agrees with
both the DDM and the experimental results. Similar droplet sizes are predicted at 40 mm
downstream of the nozzle in both models, suggesting that the breakup models employed
in each are behaving comparably and the coalescence of droplets then takes over as the

FIG. 10. Spray penetration results for the test cases of Hiroyasu and Kadota [34].
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FIG. 11. Droplet SMR results for the test cases of Hiroyasu and Kadota [34].

dominant factor in the determination of the SMR in both models. One valuable advantage
of the new model is its ability to give instantaneous values of the SMR at any location at
any time, but the DDM relies on collecting data on passing droplets over a period of time,
in this case 10 ms.

The penetration results for the hollow-cone cases are presented in Fig. 12. Reasonable
agreement can be seen between the predictions and the experiments, although not to the
quality seen in the narrow-angle spray results. In the very initial stages of injection
the penetration is severely overpredicted as in reality it takes the hollow-cone structure
some time to form, whereas it is assumed to form immediately in the computation. By 1 ms
the agreement is much better, and it remains so until 2 ms. Overall the results are good and
the momentum transfer model and predicted spray structure are well validated. The spray
width results shown in Fig. 13 are also reasonable, although poorer than the penetration
results. Again the real spray forms less quickly than the predicted spray, although the spray

FIG. 12. Comparison of predicted spray penetration with the experimental data of Ren and Nally [35].
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FIG. 13. Comparison of predicted spray width with experimental data of Ren and Nally [35].

width results become more accurate after the first millisecond. The rate of increase of spray
width is underestimated at 2 ms, so it is likely that the spray width will be slightly underpre-
dicted at later times, possibly due to the entrainment of too much gas. An overall SMR is
quoted in [35] for the spray as 13.6 µm for case R1. This is reasonably close to the predicted
size results of Fig. 14.

5.3. Effects of Submodels

Figure 15 shows the effect of including the breakup and collisions models on the predic-
tion of the spray droplet sizes in the narrow-cone baseline case H1. It can be clearly seen
that all changes in droplet SMR between 30 and 100 mm downstream of the nozzle are

FIG. 14. Variation in Sauter mean radius with ambient pressure.
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FIG. 15. Droplet sizes produced by droplet dynamic models for test case H1.

caused by these two phenomena. The effect of breakup is to reduce the droplet SMR in the
near-injector region, and coalescence between droplets causes the increase in the droplet
SMR as the axial distance increases.

The effects of the breakup and collisions models on the drop sizes in the hollow-cone
spray for case R1 are presented in Fig. 16. The droplet SMR growth rate with downstream
distance is very small beyond 20 mm from the injector whether collisions are accounted
for or not. Thus it can be concluded that collisions are only important in the very near
nozzle region. The inclusion of the droplet breakup model has very little effect on the
downstream droplet SMR values, which suggests that very few droplets introduced at inlet
are aerodynamically unstable in this spray flow.

The prediction of larger drops in the near-orifice region when collisions are accounted
for results in some variation in the hollow-cone spray shape. As shown in Fig. 17, the spray

FIG. 16. Effect of droplet dynamic models on Sauter mean radius for test case R1.
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FIG. 17. Effect of droplet dynamic models on spray width for test case R1.

is predicted to be significantly wider, and the axial penetration also increases by a lesser
amount, due to the smaller effect of drag on the larger drops.

The collisions source term contains a model constant (see Eq. (60)) and therefore the
effects of this constant on the spray predictions require investigating. Figure 18 shows the
effect of increasing the constant on the droplet sizes for the narrow-cone case H1. This
figure confirms that coalescence is the dominant result of the collisions. The recommended
value of the constant is 0.15, as this gives predictions of drop sizes that match the exper-
imental value at 65 mm, and this value is used in all other calculations. It should also be
noted that the droplet sizes at the 30-mm axial distance do not increase rapidly with the col-
lisions constant. This suggests that in the near-injector region the effect of droplet breakup
is dominant over the effect of droplet coalescence. The collision regime predicted in this
region by the model is the fragmentation regime due to the much higher relative velocities
between droplets.

FIG. 18. Variation of droplet sizes with collisions coefficient for test case H1.
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Because of the relatively few collisions occurring in hollow-cone sprays, this constant
has little impact on the drop size predictions for that class of spray.

5.4. Numerical Effects

Both the spray penetration and droplet size results for all cases show good insensitivity
to the time step used, for a range of step size from 0.5 to 2.0 µs. The largest effect is seen on
the penetration of narrow-cone sprays, where a maximum variation of about 5% is found
after 3 ms of injection [1].

The effect of the grid on the results was measured by changing the size of the injection
cell and the rest of the grid proportionally. The injection cell size was based on the maximum
dimension of the cell (always in the axial direction), which ranged from 0.3 to 2 mm in
these tests. The number of cells ranges from 180 × 120 to 27 × 18. For the narrow-cone
spray cases the predicted penetration is almost unaffected as the grid is coarsened, with a
maximum variation of about 8% [1]. The coarse grids used with DDM models cause the
gained gaseous momentum to be spread over too large a gas volume; hence the velocity
difference between the phases is maintained at too high a level and the remaining drag force
is overpredicted as a result, causing low values of the spray penetration (Abraham [36],
Watkins and Khaleghi [37]). However, even the coarsest grid size used here is sufficiently
fine to allow the scheme to predict the localised gas entrainment created by disperse droplets.

The smallest downstream SMR values in narrow-cone sprays are predicted when using the
coarsest grid [1]. This is due to the large cells at the centreline not capturing the full thickness
of the spray, and hence this more dilute picture of the spray results in fewer droplet collisions
and thus smaller downstream SMR values. Even then the maximum variation in drop sizes
using these grids is only about 10%. The results obtained differ very little for both penetration
and droplet sizes using the two finest grids, showing a good degree of grid independence.

The penetration results obtained for hollow-cone spray case R1 using four different grids
are shown on Fig. 19. Very good agreement is seen between the results produced by the
three finer grids, with the coarsest grid overpredicting the penetration. Similar agreement
between the three finer grids is found in the prediction of the spray width [1]. The coarse
grid overpredicts the width initially due to the large cell size, and eventually it underpredicts

FIG. 19. Variation in spray penetration with computational grid density, measured in terms of the longest side
of the injection cell, for test case R1.



SPRAY SUBMODELS BASED ON SIZE MOMENTS 617

the width. This is caused by the prediction of too much spray collapse, which also causes
the overprediction of penetration to continue beyond the initial stages of injection. As
with the narrow-cone spray, the droplet SMR reduces as the grid becomes coarser due to
the prediction of fewer collisions near to the injector in coarse grids. In most of the spray,
there is little change in droplet size, and so the predicted sizes do not differ a great deal
from each other. The sizes predicted by the two finest grids are very similar, showing that
there exists a high degree of grid independency among these results [1].

6. CONCLUSIONS

The spray model, extended and applied in this work, has been developed in previous
publications [1, 2]. The model uses the moments of the droplet number distribution as
the parameters required to construct a polydisperse Eulerian spray model that does not
require droplet size classes. Transport equations were developed for two of these moments
involving the use of suitable moment-average velocities, and two further moments were
obtained from a suitable number distribution function. Transport equations have also been
derived for the moment-average velocities where required.

In this paper submodels have been designed to capture the effects of interphase drag,
droplet breakup, and droplet–droplet collisions. Parametric tests have shown that the spray
performance is physically consistent, with a small dependence on time step and grid den-
sity. The test cases employed in the previous publications, and the work presented here,
show that the model can use much finer grid spacings than a DDM, resulting in smaller
numerical errors. The model produces excellent spray penetration results in comparison
with experimental data, thus supporting the interphase transfer models. The collapse of the
hollow cone is also evident in the predictions, in good agreement with experimental data.

The model has been applied here to calculate local values of the drop sizes produced
by narrow-cone and hollow-cone sprays. The results predicted are in good agreement with
experimental data. The performance of the breakup and collisions models in dense narrow-
angle sprays is supported by good predictions of droplet sizes.

The present method is believed to be computationally inexpensive. Beck and Watkins [38]
quote CPU times required to predict narrow-cone sprays using the same grid density as
applied in the test cases here. Low-injection-pressure cases (17 MPa), using a time step of
2 µs, required less than 5 minutes of CPU time on a Sun Enterprise 450 workstation. With
higher injection pressures of 137 MPa, requiring a time step of 0.2 µs, the CPU time was
40 minutes. No direct comparisons with a DDM have been undertaken.

The model has successfully predicted the main features of the spray, but there are aspects
of the model in which improvements can be made. One area that has not been investigated
yet is the possibility of constructing a primary atomisation model where large blobs of
liquid are inlet at the injector and are shattered into small droplets. This could be achieved
in the model via a droplet breakup source term for Q2. This has the potential to better
capture phenomena such as the breakup length and predict the very small droplet sizes seen
in high-pressure sprays.

Only one assumed number distribution has been used in the course of this work. Fu-
ture work should consider a number of analytically integrable functions and compare the
behaviour of the model with different assumed distributions, as it is known that different
atomisers produce different droplet size distributions. Comparing the local distribution as
well as the SMR with experimental data would also provide insight into the behaviour of
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the model and provide a practical basis for deciding how to change the assumed droplet
size distribution with space and time.

Recent studies of wall impaction [39, 40] have shown that the results of modelling
attempts that consider groups of single droplets have not provided satisfactory results in
comparison with experiment. Roisman et al. [40] concluded that the impact of a polydisperse
spray cannot be described by the linear superposition of single droplet impacts, and they
define an average Weber number at impact to correlate the droplet diameter distribution
after impact. This use of average properties and distribution correlation suggests that these
could be fairly straightforwardly introduced into the present model to predict spray–wall
impaction. Average spray quantities could be defined in terms of the droplet moments and
moment-average quantities to determine the postimpingement spray characteristics, i.e., the
resultant droplet moments and moment-average quantities. To obtain useful correlations for
the postimpingement characteristics, it is likely that this will be done in a mainly empirical
manner using as wide a range of different impaction conditions as possible.

APPENDIX: NOMENCLATURE

b Impact Parameter
BQi Source Term due to Breakup
c Number of Drops
Ccoll Collision Constant
CD Discharge Coefficient
Cd Drag Coefficient
Cs Breakup Time Constant
Cµ, Cε1

Cε2, Cε3 Turbulence Parameters
D Diameter
H Injection Cell Length
h Liquid Sheet Thickness
k Turbulent Kinetic Energy
N Number of Drops
Ncoll Number of Collisions
n(r) Number Size Distribution
P Pressure
p Partial Pressure, Probability
Pk Production of Turbulence Kinetic Energy
Pn Poisson Distribution Probability
Qi Droplet Moment
Q0 Total Drop Number
Q1 Sum of Drop Radii
Q2 Sum of Squares of Drop Radii
Q3 Sum of Cubes of Drop Radii
r Radius
Re Reynolds Number
S Source Term
t Time
U Velocity
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V Radial Velocity
V Volume
v(d) Volume Size Distribution
We Weber Number
x Coordinate Direction
X Weighting Factor

Greek Symbols

α, β Spray Cone Angles
αR Rosin–Rammler Parameter
γk Volume Fraction of kth group
δt Time Step
ε Dissipation Rate
θ Void Fraction

µ Dynamic Viscosity
ν1 Liquid Turbulent Viscosity
ρ Density
σ Surface Tension
σ Turbulent Prandtl Number
σν Turbulence Damping Coefficient
�i Moment Averaged Quantity
� General Dependent Variable

Subscripts

0 Inlet
32 Sauter Mean
b Bag Breakup
cell Cell
coal Coalescence
coll Collision
eff Effective
g Gas
i Moment Index
in In
inj Injection
j Vector (Free) Index
k Turbulent Kinetic Energy
l Liquid
lam Laminar
m Mass
out Out
p, q Mean Diameter Parameters
Qi Moment
R Rosin–Rammler
rel Relative
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s Stripping Breakup
sep Separation
t Inside Radius
Uki Velocity Component
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